Page 31 - 技數學 B 升學跨越講義
P. 31

Chapter 1  坐標系與函數圖形


                    (    ) 14. ʊٝ A(7 , -14)eB(-3,-2) މ̻ࠦɪʘՇᓃdۆ AB ʘʕᓃ M މОk
                                                              -7 -5            21    1
                             (A) (5 , -6)c(B) (2 , -8)c(C) (      ,    )c(D) (    , -   )f
                                                               2    2          2     2


                    (    ) 15. ண A(2 , -1)eB(6 , 2) މѬᅺ̻ࠦɪՇᓃd˲ C މᇞݬ AB ɪɓᓃdԴ੻
                             2AC = 3BCfӋ A ၾ C Շᓃගʘ൷ᕎމОkc(A) 1c(B) 2c(C) 3c(D) 4f

                    (    ) 16. ʊ̻ٝࠦɪ޴ମɧᓃ A(7 , -14)eB(-3 , -2)eC(x , y) ίΝɓٜᇞɪd˲ AB = BCd

                             ۆ x - y = kc(A) - 3c(B) 3c(C) 23c(D) -23f
                    (    ) 17. ߰ M ᓃމ A(-1 , 3) ၾ B(3 , 7) Շᓃʘʕᓃdۆ M ᓃЇ (3 , 3) ʘ൷ᕎމОk

                             (A)  10 c(B) 3c(C) 22 c(D)  6 f

                    (    ) 18. ʊٝ A(3 , -4)eB(-5 , -6) މɓ෥ٜٙࢰՇ၌ᓃdۆ෥ːѬᅺމОk

                                                                 1    11          7 1
                             (A) (4 , 1)c(B) (-1 , -5)c(C) ( -   , -      )c(D) (   ,   )f
                                                                 2    2           2 2

                    (    ) 19. וɪᕚdϤ෥ࠦጐމεˇ̻˙ఊЗkc(A) 104rc(B) 68rc(C) 21rc(D) 17rf

                    (    ) 20. ணɓ̻Б̬ᗙҖ ABCDdʊٝ A(-4 , 1)eB(3 , 4)eC(2 , 5)dۆ D ᓃѬᅺމОk

                             (A) (-6 , 5)c(B) (0 , 3)c(C) (-3 , 4)c(D) (-5 , 2)f
                    (    ) 21. ʊٝɧԉҖɧ௟ᓃٙѬᅺʱйމ A(3 , -5)eB(-1 , 8)eC(7 , 6)dϤɧԉҖٙࠠː

                             ѬᅺމОkc(A) (3 , 3)c(B) (1 , 3)c(C) (2 , 4)c(D) (3 , 2)f

                    (    ) 22. DABC ʕdண G މ DABC ٙࠠːdɦ A(-4 , -5)eB(2,0)eG(3 , -4)dۆ C ᓃѬᅺ
                                            1                 3
                             މОkc(A) (   , -3)c(B) (3 ,   )c(C) (11 , -7)c(D) (10 , -6)f
                                            3                 2

                    (    ) 23. DABC ʕdɧ௟ᓃѬᅺމ A(7 , -5)eB(3 , -2)eC(5 , 1)dண G މ DABC ٙࠠːd
                             ɦ M މ AC ʘʕᓃdӋ GM ʘڗܓމОkc(A) 1c(B) 3c(C) 5c(D) 6f

                    (    ) 24. ٜᇞ Lj3x - 4y = 12 ၾɚѬᅺൿהఖϓɧԉҖʘࠠːމОk
                                   4                  4           4                 4
                             (A) (   , -1)c(B) (-1 ,   )c(C) (-   , 1)c(D) (1 , -   )f
                                   3                  3           3                 3


                    (    ) 25. ʊٝՌᅰ f (x) =  4 -    x dۆϤՌᅰ x ٙࠢՓމОk
                                                     2
                             (A) -2 #  x #  2c(B) x $  2 א x #  -2c(C) x !  2c(D) x ! !2f
                    (    ) 26. ʊٝɓϣՌᅰ f (x) = ax + bdɦ f (2) = -3 ˲ f (-1) = 0dۆ f (3) = k

                             (A) 4c(B) 2c(C) - 2c(D) -4f

                    (    ) 27. ʊٝ f (x + 2) = 3x - 5dۆ f (0) = kc(A) -5c(B) -7c(C) -11c(D) -13f

                                      x + 2     x - 4                                       -1         2
                    (    ) 28. ʊٝ F (       ) =      dۆ F (3) = kc(A) 2c(B) - 1c(C)            c(D) -  f
                                        x      2x + 1                                        7         3




                                                                                                                       21
   26   27   28   29   30   31   32   33