Page 32 - 技數學 B 升學跨越講義
P. 32

數學 B


                    (    ) 29. ʊٝɓϣՌᅰ f (x) = - 3x + 1dۆϤՌᅰྡҖʔึ຾ཀࡳɓ൥ࠢk
                             (A) ɓc(B) ɚc(C) ɧc(D) ̬f

                    (    ) 30. ʊٝɓϣՌᅰ f (x) = ax + 5d˲ f (-1) = 7dۆᗫ׵ϤՌᅰٙાࠑО٫፹Ⴌk

                             (A) a = - 2c                           (B) ྡҖމɓૢٜᇞc
                             (C) ၾ y ൿٙʹᓃމ (0 , 5)                  (D) ྡҖʔஷཀୋ̬൥ࠢf

                    (    ) 31. ணՌᅰ f (x) = ax + b ʘྡҖஷཀୋɓeɚe̬൥ࠢdۆᓃ P(ab , a - b) ίୋ఻൥ࠢk

                             (A) ɓc(B) ɚc(C) ɧc(D) ̬f

                                                 2
                    (    ) 32. ɚϣՌᅰ f (x) = 2x  + 4x - 3 ٙྡҖމɓסيᇞdۆՉ௟ᓃމОk
                             (A) (-1 , -4)c(B) (-2 , -11)c(C) (-1 , -5)c(D) (-2 , -8)f
                                               2
                    (    ) 33. ɚϣՌᅰ f (x) = x  + 10x + 12 ٙ௰ʃ࠽މОk
                             (A) - 13c(B) 25c(C) 37c(D) 12f

                                                      2
                    (    ) 34. ᗫ׵ɚϣՌᅰ f (x) = - x  - 1dۆɨΐО٫፹Ⴌk
                             (A) ྡҖމකɹΣɨٙסيᇞ                        (B) ྡҖʘ௟ᓃѬᅺމ (0 , -1)c

                             (C) ྡҖٙ࿁၈ൿމ x = 0c                     (D) Ռᅰ௰ʃ࠽މ - 1f

                                                                                    3       3       1
                                           2
                    (    ) 35. Ӌ f (x) = -2x  + 2x + 1 ʘ௰ɽ࠽މОkc(A) 1c(B)  c(C)  c(D)  f
                                                                                    4       2       2
                                          2
                    (    ) 36. ʊٝ f (x) = x  - 4x + 1dɦ 0 #  x #  3dண f (x) ௰ɽ࠽މ Md௰ʃ࠽މ mdۆ
                             2M + m = kc(A) -1c(B) 1c(C) 3c(D) 4f
                                             2
                    (    ) 37. ʊٝ f (x) = -2x  + 8x + 1d˲ - 2 #  x #  1dۆ f (x) Ϟ௰ɽ࠽ Md௰ʃ࠽ mdۆ
                             M + m = kc(A) -20c(B) -16c(C) -14c(D) 0f

                                              2
                    (    ) 38. ߰Ռᅰ f (x) = ax  - 12x + bdί x = - 2 ࣛdϞ௰ɽ࠽މ 10dۆ (a , b) = k
                             (A) (2 , 3)c(B) (-3 , -2)c(C) (3 , 2)c(D) (-2 , -3)f

                                                       2
                    (    ) 39. ணɚϣՌᅰ y = f (x) = ax  + bx + c ྡҖٙ௟ᓃމ (2 , 1) ˲ʹ y ൿ׵ᓃ (0 , 3)dۆ
                             2a + b = kc(A) -1c(B) -2c(C) 1c(D) 2f

                                                 2
                    (    ) 40. ɚϣϜᇞ f (x) = ax  + bx + c ʘྡҖν̛dɨΐાࠑО٫މڢk                                 y
                                                                    2
                             (A) a > 0c(B) b > 0c(C) c > 0c(D) b  - 4ac < 0f
                                           2
                    (    ) 41. ʊٝ f (x) = x  + x + k ʘྡҖၾ x ൿӚϞʹᓃdۆ k ʘᇍఖމОk
                                                                                                                 x
                                     1           1          1           1
                             (A) k $ c(B) k # c(C) k >  c(D) k <  f
                                     4           4          4           4
                                                2
                    (    ) 42. ண m މྼᅰd˲ x  + (m - 2)x + 4 ٙ࠽ܩމ͍dӋ m ʘᇍఖމОk
                             (A) -2 < m < 6c(B) -6 < m < 2c(C) 2 < m < 6c(D) -6 < m < -2f






               22
   27   28   29   30   31   32   33