Page 32 - 技數學 B 升學跨越講義
P. 32
數學 B
( ) 29. ʊٝɓϣՌᅰ f (x) = - 3x + 1dۆϤՌᅰྡҖʔึཀࡳɓࠢk
(A) ɓc(B) ɚc(C) ɧc(D) ̬f
( ) 30. ʊٝɓϣՌᅰ f (x) = ax + 5d˲ f (-1) = 7dۆᗫϤՌᅰٙાࠑО٫፹Ⴌk
(A) a = - 2c (B) ྡҖމɓૢٜᇞc
(C) ၾ y ൿٙʹᓃމ (0 , 5) (D) ྡҖʔஷཀୋ̬ࠢf
( ) 31. ணՌᅰ f (x) = ax + b ʘྡҖஷཀୋɓeɚe̬ࠢdۆᓃ P(ab , a - b) ίୋࠢk
(A) ɓc(B) ɚc(C) ɧc(D) ̬f
2
( ) 32. ɚϣՌᅰ f (x) = 2x + 4x - 3 ٙྡҖމɓסيᇞdۆՉᓃމОk
(A) (-1 , -4)c(B) (-2 , -11)c(C) (-1 , -5)c(D) (-2 , -8)f
2
( ) 33. ɚϣՌᅰ f (x) = x + 10x + 12 ٙ௰ʃ࠽މОk
(A) - 13c(B) 25c(C) 37c(D) 12f
2
( ) 34. ᗫɚϣՌᅰ f (x) = - x - 1dۆɨΐО٫፹Ⴌk
(A) ྡҖމකɹΣɨٙסيᇞ (B) ྡҖʘᓃѬᅺމ (0 , -1)c
(C) ྡҖٙ࿁၈ൿމ x = 0c (D) Ռᅰ௰ʃ࠽މ - 1f
3 3 1
2
( ) 35. Ӌ f (x) = -2x + 2x + 1 ʘ௰ɽ࠽މОkc(A) 1c(B) c(C) c(D) f
4 2 2
2
( ) 36. ʊٝ f (x) = x - 4x + 1dɦ 0 # x # 3dண f (x) ௰ɽ࠽މ Md௰ʃ࠽މ mdۆ
2M + m = kc(A) -1c(B) 1c(C) 3c(D) 4f
2
( ) 37. ʊٝ f (x) = -2x + 8x + 1d˲ - 2 # x # 1dۆ f (x) Ϟ௰ɽ࠽ Md௰ʃ࠽ mdۆ
M + m = kc(A) -20c(B) -16c(C) -14c(D) 0f
2
( ) 38. ߰Ռᅰ f (x) = ax - 12x + bdί x = - 2 ࣛdϞ௰ɽ࠽މ 10dۆ (a , b) = k
(A) (2 , 3)c(B) (-3 , -2)c(C) (3 , 2)c(D) (-2 , -3)f
2
( ) 39. ணɚϣՌᅰ y = f (x) = ax + bx + c ྡҖٙᓃމ (2 , 1) ˲ʹ y ൿᓃ (0 , 3)dۆ
2a + b = kc(A) -1c(B) -2c(C) 1c(D) 2f
2
( ) 40. ɚϣϜᇞ f (x) = ax + bx + c ʘྡҖν̛dɨΐાࠑО٫މڢk y
2
(A) a > 0c(B) b > 0c(C) c > 0c(D) b - 4ac < 0f
2
( ) 41. ʊٝ f (x) = x + x + k ʘྡҖၾ x ൿӚϞʹᓃdۆ k ʘᇍఖމОk
x
1 1 1 1
(A) k $ c(B) k # c(C) k > c(D) k < f
4 4 4 4
2
( ) 42. ண m މྼᅰd˲ x + (m - 2)x + 4 ٙ࠽ܩމ͍dӋ m ʘᇍఖމОk
(A) -2 < m < 6c(B) -6 < m < 2c(C) 2 < m < 6c(D) -6 < m < -2f
22