Chapter 5 中斷

1	選擇	題	_	(每題	2	分	,	共	50	分)
174	*			•	-	_	//			~ ~	"	,

	1	连	擇	題	- (每題 2 分 , 共 50 分)	
5-1	(C)	1.	使用輪詢法(polling)來處理 I/(A) 效率較差	O 時,則下列敘述何者不正確? (B) 電路簡單
					(C)優先順序由硬體決定	(D) 先被詢問者其優先權最高。
	(C)	2.	已知一微處理機,當 CPU 執行 行速度變慢的主要原因為何?	程式為輪詢(Polled)時,其執
					(A) 硬體電路複雜	(B) 記憶體太少
					(C) 週邊設備檢查	(D) 資料太繁多。
					解 輪詢式需要一個一個詢問週 設備很多時,會花費很多時	邊是否有資料傳輸需求,當週邊 間進行詢問(檢查)工作。
	(В)	3.	當輸出入埠與中央處理單元(Cl 通知 CPU,要求 CPU 暫停原來 完畢後再恢復原來的工作,此種	的工作,先處理輸出入埠,處理
					(A) 程式控制式 I/O	(B) 中斷式 I/O
					(C) DMA(直接記憶存取)	(D) 並列資料傳輸。
	(A)	4.	若 CPU 的中斷輸入 INT 及 NMI	之信號同時輸入時
					(A) NMI 優先動作	(B) INT 優先動作
					(C) 電腦中止執行	(D) 不理會。
					解 中斷優先權重置 (Reset) > 遮沒, 拒絕接受 INTR。	₩W > INTR。INTR 可透過 IF=0
	(В)	5.	如果微處理機同時產生下列狀況	時,應執行何者?
					(A) 可遮罩中斷	(B) 重置性 (Reset) 處理
					(C) 軟體中斷處理	(D) 不可遮罩中斷處理。
	(A)	6.	CPU 與週邊元件間,試問下列何端是否有資料要傳送?	可種方式是 CPU 需主動詢問發送
					(A) 輪詢式 I/O (Polling I/O)	(B) 中斷式 I/O (Interrupt I/O)
					(C) 直接記憶體存取 (DMA)	(D) 交握式 (Handshake)。
						信事///35

- (D) 7. 在中斷式 I/O 中,當 I/O 裝置需要作 I/O 服務處理時,會以何種 信號來通知 CPU,以進行 I/O 傳輸服務? (A) 匯流排仲裁線(BRQ) (B) 位址線 (C) 中斷認知(IACK) (D) 中斷要求(IRQ)。 解 需要作 I/O 服務處理時,週邊裝置會以中斷要求 (IRO或 INTR) 信號來通知 CPU。 (C) 8. CPU 內的旗標暫存器中之 IF = 1 時,則表示此 CPU 將: (A) 進入單步執行模式 (B) 退出單步執行模式 (C) 可接受外部中斷請求 (D) 無法接受外部中斷請求。 5-2 (A) 9. 某計算機系統允許八個中斷要求(IR0 ~ IR7), 且對於 IO 中斷 採用循環式優先權,則完成 IR7 中斷服務後,下一次具有最高優 先權的 IO 中斷為 (A) IR0 (B) IR1 (C) IR6 (D) IR7 • 解)中斷控制器優先順序:IR0最大、IR7最小,完成IR7中斷 服務之後,接著為IR0。 (C) 10. 在同時擁有可遮置式中斷與不可遮置式中斷(NMI)的微處理機 系統中,下列事件的發生,何者最適合使用 NMI 請求? (B) 計時器計時終止 (A) 硬碟資料傳送 (C) 停電 (D) RS - 232 資料發送完成。 (C) 11. 微電腦系統如果以組合語言設計中斷式 I/O 時,其中斷服務程式之 最後一行需放置下列哪一個指令,使中斷服務程式結束後能回歸 主程式繼續執行? (A) END (B) ORG (C) IRET (D) EQU。 (A) 12. CPU 的每一中斷向量,所儲存的資料為中斷服務常式的 (A) 所在的記憶體位址 (B) 指令運算資料 (C) 長度 (D) 工作內容。 (B) 13. 有關菊鍊式中斷,下列敘述何者為非? (A) 該方式用於處理多個中斷裝置之優先權 (B) 不一定需要中斷致能輸入(IEI) 和中斷致能輸出(IEO),
 - 軟需要 IEL與 IEQ 作為中斷認可訊號的傳遞。

(C) 連接完成的中斷位置就已決定中斷的優先順序 (D) 該中斷方式,其執行速度高於輪詢 (Polling) 中斷。

為其優點

- 5-3 (A) 14. 下列有關 x86 中斷處理的敘述,何者是錯誤的?
 - (A) 當 CPU 執行 STI 指令後,便不再接收 INTR 的中斷
 - (B) 當 CPU 回應中斷認知後,中斷控制器應回送中斷向量
 - (C) CPU 利用中斷向量找到中斷處理常式的進入點
 - (D) 中斷處理常式不可任意破壞暫存器值。
 - (A) 15. 以下何者是 I/O 資料轉移的正確敘述?
 - (A) 中斷 I/O 是由 I/O 設備來啟動 CPU 作資料轉移
 - (B) DMA 資料轉移可完全利用軟體之方式來完成
 - (C) 程式 I/O 是由 I/O 設備觸發中斷要求線來啟動 CPU 作資料轉移
 - (D) 80x86CPU 不支援程式 I/O。
 - (D)16.中央處理單元(CPU)處理中斷(interrupt)時,通常採用下列何種方式來暫存資料?
 - (A) 表列(list)

- (B) 指標 (pointer)
- (C) 佇列 (queue)
- (D) 堆疊(stack)。
- (D) 17. 下列有關 CPU 執行中斷的敘述,何者有誤?
 - (A) CPU 會暫停目前的程式進行
 - (B) CPU 會將旗標狀態推入堆疊
 - (C) CPU 會將程式計數器的內容推入堆疊
 - (D) CPU 會對中斷服務程式 (ISR) 進行變數參數傳入的動作。
- (D) 18. CPU 存取 I/O 裝置之資料,若採用中斷方式,有何特點?
 - (A) 可不經 CPU 傳送資料
 - (B) CPU 中斷動作,不需儲存返回位址、狀態暫存器等
 - (C) 不需外加硬體控制信號
 - (D) 可即時反應,且不需經常詢問 I/O 裝置,可節省 CPU 時間。
- (C) 19. 微處理機與外部硬體中斷介面主要的信號之一是
 - (A) 中斷記憶 (B) 中斷週期 (C) 中斷認可 (D) 中斷分離信號。
 - 解 中斷要求信號方向為週邊→ CPU,中斷認可信號方向為 CPU→週邊。

有著作權 侵害必究

- (C) **20.** Intel 80x86 CPU 的 中 斷 有 四 種 來 源: 第 一 種 為 NMI (Non Maskable Interrupt),第二種為 INTR (Interrupt Request), 第三種為執行中斷指令 INT xx, 第四種為 CPU 執行除算錯誤所 產生的除以零中斷(Divid Zero),當主機板上 DRAM 的同位 元錯誤(Parity Error)發生,則會產生哪一種中斷?
 - (A) INTR (B) INT xx (C) NMI (D) Divid Zero •
 - 解 NMI 具有高優先權,無法以程式或其他方法取消,包括除 零中斷、同位元錯誤等。
- 5-4 (C) 21. 在 8259A PIC 中是用下列那種方法辨認中斷來源裝置?
 - (A)輪詢 (polling)
 - (B) 菊鍊優先權結構 (daisy chain)
 - (C) 中斷優先權裁決器(interrupt priority management hardware)
 - (D) 巡更優先權(round-robin priority)。
 - (A) 22. 用以規劃系統內是否有多只 8259A(主僕式)的控制字語是 (A) ICW1 (B) ICW2 (C) ICW4 (D) OCW1 •
 - (B) 23. 以下哪一個 LSI 周邊 IC 是可程式化中斷控制器 (Programmable Interrupt Controller) ?
 - (A) 8255A (B) 8259A (C) 8237 (D) 8254 °
 - 解) 配合 INTEL CPU8086/8088 相關週邊晶片為:

8237:直接記憶體存取控制器(DMAC)

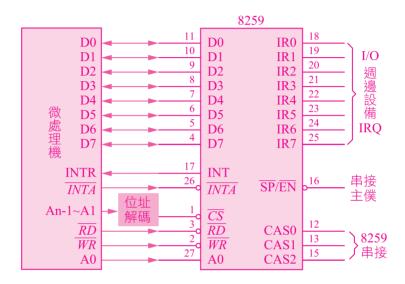
8251: 串列 (serial) 之 I/O 介面 IC、萬用同步傳送接收器

8254:可程式內部計時/計數器

8255: 為调邊並列界面 (PPI)

8259:可程式中斷控制器(PIC)。

- (D) 24.8259A 可用主/從控方式串接起來允許系統中容納
 - (A) 8 (B) 16 (C) 32 (D) 64 個可遮罩式中斷。
- (C) 25.8259A 中斷控制器哪一只接腳,用以決定該 PIC 為主控者或從 控者?
 - (A) A0 (B) \overline{INTA} (C) $\overline{SP}/\overline{EN}$ (D) CAS0 ~ CAS2 °



◢ 問答題 - (每題 10 分,共 50 分)

- 1. 請說明詢問式 I/O 的工作原理?
 - 解)假設 CPU 連接 A、B、C 三個週邊裝置,所謂詢問式,CPU 首先詢問 A 是 否有資料傳輸的需求?如果沒有,再詢問 B 是否有資料傳輸的需求?如果 沒有,再詢問 C 是否有資料傳輸的需求?同樣地過程一直重複,週而復始 詢問A、B、C是否有資料傳輸的需求?當然,如果某週邊裝置有資料傳輸 需求,就進行資料傳輸工作,傳輸完畢後,又同樣重複詢問A、B、C。
- 2. 請說明中斷式 I/O 的工作原理?
 - 解) 中斷式 I/O 是當週邊設備有資料傳輸需求時才向 CPU 發出中斷請求,例 如通知CPU傳送下一筆資料,或當週邊備妥資料,通知CPU來讀取資料。 在週邊處理資料的同時,CPU可執行其他工作,直到週邊發出中斷,再 進行與週邊之間的資料傳輸工作。
- 3. 請說明可遮置式中斷的動作過程。
 - 解)可遮罩式中斷以 INTR 來接收外界的可遮罩式中斷要求,由 CPU 決定要 否接受中斷?如果接受中斷,則以 =0 回應,表示 CPU 已接受所要求的中 斷,將淮行指定的中斷服務。另外,以遮置位元決定是否接受中斷要求, 當執行CLI指令後,CPU將不接受可遮罩中斷請求,反之,若執行STI後, CPU 將會認可可遮置中斷請求,並發出回應。
- 4. 中斷式的資料傳輸的軟體規劃需要哪兩個步驟?
 - (解) 中斷工作軟體規劃的初始化有兩件事要做:
 - 1. 在主程式進行中斷初始化工作
 - (1) 開啟中斷致能,讓中斷 INTR 可以發生。
 - (2) 確定中斷號碼,設定中斷向量,將中斷服務副程式所在位址,填入 中斷向量表。
 - 2. 中斷服務副程式:
 - (1) 撰寫中斷服務程式 ISR 的內容就是發生中斷後,希望 CPU 執行的 工作,例如輸入資料,或輸出資料。副程式應以 iRet 結束。
 - (2) 將中斷服務副程式常駐於記憶體中斷向量表所指記憶體位址,等待 發生中斷時執行。

5. 請繪製 PIC-8259 與微處理機連接的方式。

解) 下圖為微處理機與 8259 連接概略圖,左側接腳 D0~D7 通常接至 CPU 的 資料匯流排,作為 8259 與 CPU 間資料與命令的傳輸線。而與 \overline{WR} 通常與 CPU 對接, $\overline{WR} = 0$ 時讀取 8259 狀態暫存器,而 =0 時則是寫入控制字組, 用來規劃 8259 的工作模式。位址線 A0 直接接至 CPU, 而高位元 An-1~A1 則經過位址解碼電路解碼後用來選擇,可用來致能或禁能 8259。

侵害必究